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ABSTRACT: A multi-index drought (MID) model was developed to combine the strengths of various drought indices for
agricultural drought risk assessment on the Canadian prairies, as related to spring wheat crop yield. The model automatically
selects and combines optimum drought indices derived from the preceding and current months as they become available to
better match the conditions (both spatially and temporally) where they work well. The cross-validation results showed that
(1) the prediction accuracy of the MID model is better than (or occasionally equal to) using any single drought index for all
modelling stages, (2) drought indices derived from the recharge period are useful for early drought risk detection, (3) model
prediction accuracy improved as the growing season progressed with the most accurate assessments at the beginning of
August, and (4) the model performed best in the more arid locations in the southern prairies, which tend to have a more
variable precipitation regime. The model assessment results provide the spatial intensity distribution of possible drought
progression and recession before and during the growing season, and can be used with complementary information in
agricultural drought risk management and mitigation strategies. Copyright  2011 Royal Meteorological Society
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1. Introduction

Drought is a recurrent phenomenon on the Cana-
dian prairies (hereafter referred to as ‘the prairies’).
Three decades in the twentieth century (1910–1919,
1930–1939, and 1980–1989) experienced drought for
more than half the decade (Nkemdirim and Weber, 1999).
Droughts on the prairies are closely related to the lack
of precipitation, above-normal air temperatures, low soil
moisture, and insufficient surface water supply (Wheaton
et al., 1992).

Although the natural conditions of the prairies are
favourable for mechanized farming, the agricultural sec-
tor is highly vulnerable to weather variability (Quir-
ing and Papakyriakou, 2003). Recent growing season
droughts in the prairies during 2001 and 2002 resulted
in an estimated loss of $3.6 billion in agricultural pro-
duction (Wheaton et al., 2005). To reduce the serious
consequences of drought, besides improving the under-
standing of the hazard and the factors that influence
vulnerability, there are calls for more attention to pre-
diction/early warning activities (i.e. risk assessment) that
could improve drought preparedness and response, as
well as to reduce future impacts (Sivakumar and Wilhite,
2002).
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Drought indices are the integration of one or more
climate or hydrological variables (e.g. precipitation, tem-
perature, soil moisture, stream flow, groundwater levels,
etc.) on a quantitative scale (Steinemann et al., 2005).
They have been widely used to detect the onset and
severity of drought, and to study its spatial and temporal
patterns (Quiring and Papakyriakou, 2003). The relatively
low cost and generally high availability of the weather
and hydrological data compared to other types of data are
other reasons for their wide application.

Over the years, to our knowledge, the majority
of drought indices studies have focused on evaluat-
ing drought indices for specific regions (e.g. Quiring
and Papakyriakou, 2003; Morid et al., 2006; Mavro-
matis, 2007) or the use of a single well-developed
drought index to characterize and predict droughts over
specific regions (e.g. Tsakiris and Vangelis, 2004; Can-
celliere et al., 2007). However, because each index pro-
vides a somewhat different measure of drought, use
of a particular specific index has often been demon-
strated to be inadequate for completely representing
this complex phenomenon (Heim, 2002; Steinemann
et al., 2005; Quiring, 2009). A combination of vari-
ous drought indices may provide a more comprehensive
assessment of drought conditions than a single-index
approach, but this has been challenging because there
has been a lack of systematic methods for their combi-
nation, use, and evaluation (Steinemann and Cavalcanti,
2006).

Copyright  2011 Royal Meteorological Society



MULTIPLE DROUGHT INDICES FOR AGRICULTURAL DROUGHT RISK ASSESSMENT 1629

In recent years, significant progress has been made in
employing multiple drought indices in drought
management. For example, the Objective Blend of
Drought Indicators (OBDI) was developed for the U.S.
Drought Monitor to provide a comprehensive assessment
of drought conditions across the country (Svoboda et al.,
2002). The OBDI combines three climate-based drought
indices and the Climate Prediction Center’s soil mois-
ture model. A percentile approach was used to trans-
form all input data into a standardized scale to which
drought category thresholds and weights for each indi-
vidual index could be assigned. The OBDI is beneficial
in providing a single ‘average’ drought designation at
the national and state level, but is not meant to capture
local drought conditions, such as in individual counties
(Steinemann et al., 2005). Brown et al. (2008) developed
a hybrid geospatial drought monitoring tool, the Vege-
tation Drought Response Index (VegDRI), to produce a
near real-time 1 km resolution map of drought conditions
in seven north-central states of the United States. The
model integrates climate-based drought indices, satellite-
derived vegetation condition information, and other bio-
physical information. The model was empirically derived
for three seasonal phases (spring, summer, and fall) by
applying a supervised classification and regression tree
analysis for each phase. The VegDRI map provides more
localized drought information at a county to sub-county
scale.

The purpose of this article is to present an opera-
tional model framework that combines the strengths of
various drought indices to provide a more comprehen-
sive assessment of agricultural drought conditions in the
Canadian prairies. Agricultural drought has been defined

as ‘the condition when moisture supply of a region
consistently fails to meet the needs of a particular crop at
a particular time, such that the crop production or range
productivity is significantly affected’ (Bordi and Sutera,
2007). As agricultural drought on the prairies is the single
most limiting factor to crop yield (Akinremi et al., 1996),
it can be used as an agricultural drought indicator: By
predicting reduced crop yield, one can predict droughts
(Morgan, 1985; Sinha et al., 1992). As drought index
integration is the main focus of this study, other man-
agement (e.g. soil fertility status, cultivation practices,
pest control, and crop disease) and weather-related fac-
tors that effect crop yield were not considered and were
assumed to remain stable throughout the study period.
To better match crop phenological stages and to detect
short-term dry spells, especially at pre-planting and early
crop growth stages, agricultural drought risk is assessed
at pre-planting and at the beginning of each month dur-
ing the growing season. The risk assessment results are
mapped monthly to provide the spatial intensity distribu-
tion of possible drought progression and recession in the
prairies.

2. Materials and methods

2.1. Study area

The study area is composed of a total of 34 Census Agri-
cultural Regions (CARs) across the prairies (Figure 1).
These CARs are composed of groups of adjacent census
divisions, which were defined by the agricultural agencies
in each province for the purposes of regional planning and
managing common services (Statistics Canada, 2003).

Figure 1. Spatial distribution of the 34 CARs across the prairies. Nine clusters (C1–C9) were composed of neighbouring CARs as determined
by Ward’s (1963) minimum-variance cluster analysis. This figure is available in colour online at wileyonlinelibrary.com/journal/joc
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The Canadian prairies cross the southern parts of the
provinces of Alberta, Saskatchewan, and Manitoba. Dom-
inated by a semi-arid climate, the precipitation in this
region is highly variable and unevenly distributed. Grow-
ing season (May to August) precipitation averages about
200 mm, lower than the crop water demand (approx-
imately 300 mm) (Ash et al., 1992). Winter precipita-
tion in the form of snowfall is important, accounting
for approximately one third of annual precipitation and
producing 80% or more of annual local surface runoff
(Pomeroy and Goodison, 1997). The prairie landscape
is dominated by plains and gently rolling terrain. The
absence of any significant topographic barrier in the vast
north–south corridor is responsible for the great variety
of weather (Hare and Thomas, 1919).

2.2. Data

Spring wheat yield data (tha−1) for each CAR, available
for 28 years (1976–2003), were obtained from Statistics
Canada. Spring wheat was selected in this study because
its acreage is the highest compared with other crops in the
prairies and it is growing extensively in all CARs. Also,
spring wheat is widely used in the literature to represent
agricultural drought on the prairies (e.g. Kumar and Panu,
1997; Quiring and Papakyriakou, 2003).

Three widely used drought indices, the Standardized
Precipitation Index (SPI; McKee et al., 1993) at three
time steps (1-, 3-, and 6-month), the Palmer Drought
Severity Index (PDSI; Palmer, 1965), and the Palmer
Moisture Anomaly Index (Z-index; Palmer, 1965) were
selected for use in this study. Their individual effective-
ness in characterizing agricultural drought on the prairies
has been widely studied (e.g. Akinremi et al., 1996; Quir-
ing and Papakyriakou, 2003; Wheaton et al., 2008). The
SPI’s calculation requires at least 30 years of monthly
precipitation data for the region. Besides precipitation, the
PDSI and Z-index’s calculations require at least 30 years’
monthly maximum and minimum temperature data, plus
the available holding capacity (AWHC) of the soil and
the longitude and latitude of the site for which it is being
calculated.

Considering weather stations are unevenly distributed
in some CARs and this affects the reliability of CAR
averaged drought indices, daily maximum and minimum
temperature and precipitation data were obtained from
the daily 10 km gridded climate data set for Canada
(1961–2003; AAFC, 2008a). Grids were interpolated
from daily Environment Canada climate station observa-
tions using a thin plate smoothing spline surface fitting
method implemented by ANUSPLIN V4.3. This method
has been shown to perform well when interpolating noisy
climate data across complex terrain in comparison with
other interpolation techniques (Hutchinson and Gessler,
1994; McKenney et al., 2006). According to the meta-
data of this specific gridded climate data set, on aver-
age, ANUSPLIN tends to overestimate extreme minimum
temperature by around 0.6 °C, underestimate extreme
maximum temperature by around 0.25 °C, and underesti-
mate high precipitation extremes by around 2 mm.

The SPI was calculated using FORTRAN 90/95 code
provided by the National Agroclimate Information Ser-
vice (NAIS) of Agriculture and Agri-Food Canada
(AAFC). The AWHC value of the soils was defined
via the Soil Landscapes of Canada (SLC) Version 3.1.1
(AAFC, 2008b).

The PDSI and Z-index were calculated using the
National Drought Model employed by the NAIS Drought
Watch program. The PDSI calculated from Palmer’s orig-
inal method has considerable limitations, including the
use of two simplified soil layers in the water balance
computations that may not be accurately representative of
a location, the use of empirical constants for the climatic
characteristic and the duration factors, limiting the spatial
comparability of the index, and the estimation of poten-
tial evapotranspiration with the Thornthwaite method
(Thornthwaite, 1948) which yields less realistic estimates
than Priestley and Taylor’s (1972) method (Alley, 1984;
Guttman et al., 1992). The most recent version of PDSI
model developed by Wells et al. (2004) improved the
spatial comparability of PDSI values by replacing the
empirical constants in the index with dynamically calcu-
lated values. The national drought model version used in
this study is based on a six-layer structure that is more
accurate in tracking the movement of soil moisture than
Palmer’s two-layer model. It also replaces the regional
correction factor of 17.67 employed in Palmer’s original
method to 14.2, established by Akinremi et al. (1996), to
better simulate soil moisture variations in Canada. More-
over, the potential evapotranspiration is calculated using
the Priestley and Taylor equation which has better phys-
ical appeal than the Thornthwaite’s method. These alter-
ations overcome many of the limitations in the Palmer
drought indices, providing a more accurate measurement
of moisture conditions of the study area.

Five drought indices were calculated for the entire
period from 1961 to 2003 to characterize long-term
conditions, but due to the availability constraints over
the entire study area, only the data from 1976 to 2003
were used for further analysis. Gridded drought indices
were then aggregated to CAR averages, by taking the
average value of all grid cells within each CAR.

2.3. Methods

2.3.1. Crop yield data detrending and standardization

Owing to advances in agricultural technology, such as
greater rates and frequency of fertilizer application, the
use of new crop varieties, improved weed control, and
better tillage practices, agricultural areas are generally
experiencing an upward trend in spring wheat yields
(Qian et al., 2009). To eliminate bias due to non-climatic
factors, the trend was removed using linear regression
when calculating yield variability (e.g. Hill et al., 1980;
Wu et al., 2004). To compare yield variability from CARs
with different mean values and standard deviations, the
yield residuals were standardized for each CAR using the
Z-score transformation quantifying the original score in
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Table I. Canadian prairies drought intensity classification.

Standardized yield
residuals

Drought category Cumulative
frequency (%)

> −0.20 Non-drought >35
> −0.69 to −0.20 Mild >20 to 35
> −1.24 to −0.69 Moderate >10 to 20
> −1.84 to −1.24 Severe >5 to 10
≤ −1.84 Extreme ≤5

terms of the number of standard deviations that the score
is from the mean of the distribution.

2.3.2. Agricultural drought intensity classification

Drought intensity is one of the essential components
for representing a comprehensive picture of drought
for a region (Sivakumar and Whilhite, 2002). In this
study, a five-level drought intensity classification – non-
drought, mild, moderate, severe, and extreme – was uti-
lized (Table I). As we focused on assessing dry condi-
tions, the near normal and wet conditions were grouped
into one class termed ‘non-drought.’ The chance of occur-
rence for each level of drought was defined according
to the commonly used cumulative frequency of differ-
ent drought intensities, such as the percentile categories
employed by the U.S. Drought Monitor (Svoboda et al.,
2002) and the SPI classification (McKee et al., 1993). For
each drought category, the corresponding yield threshold
with the specific chance of occurrence was calculated
from an empirical cumulative distribution function devel-
oped from the standardized spring wheat yields of the 34
CARs during the 28 years. According to this classifica-
tion, a year is identified as a drought year with a specific
intensity when the corresponding yield is lower than the
historical mean by 0.20 standard deviations.

2.3.3. Creation of spatial scale for agricultural drought
risk assessment

Widely used spatial scales for drought evaluation include
climate divisions (Svoboda et al., 2002; Steinemann and
Cavalcanti, 2006), crop districts (Quiring and Papakyr-
iakou, 2003), and political jurisdictions (e.g. countries,
provinces) (Wu et al., 2004). For the prairies, evaluat-
ing droughts by province or territory is not appropri-
ate, because administrative boundaries do not accurately
reflect the physical features and climate of the region. To
increase the sample size for model development, neigh-
bouring CARs were grouped together based on the sim-
ilarity of yield variations throughout the study period.

Ward’s (1963) minimum-variance hierarchical cluster
analysis was applied to determine which CARs were most
similar by maximizing the proportion of variation in stan-
dardized yields explained by a particular clustering of the
CARs. Different clustering solutions were examined and
a nine-clustering solution was selected, because it kept
as much similarity of the CARs within each cluster as
possible, and the number of CARs was relatively equal

within each cluster. As shown in Figure 1, the clusters
appeared to be primarily controlled by geographic loca-
tion, conforming to the generalization that geographically
close regions usually experience similar weather and crop
response (Wu et al., 2004; Williams et al., 2008). These
clusters, referred to as C1, C2 . . . C9, were used as the
spatial units for model development.

2.3.4. Identification of outliers

Both drought and flood can lead to crop water stress and
thus reduce crop yield. As the drought indices chosen in
this study do not reflect the effects of flooding, the flood-
induced yield reductions, which have an inconsistent
influence on the model development, needed to be
removed from the analysis. The criterion for identifying
the influential data was the consistency between the
standardized yield residuals and the drought indices
values before and during the growing season (c.f. Wu
et al., 2004). For each CAR, in cases where the drought
indices were constantly over 2 (i.e. moderately wet) for
at least 2 months, but the standardized yield residual
was lower than −0.69 (i.e. associated with moderate
drought), the data of that year were omitted from model
development. For each CAR, the number of flood years
varies from 0 to 3 during the study period.

For example, 1997 was a severe flood year in Man-
itoba. The Red River flooding severely damaged farm
buildings, equipment, and delayed spring planting in
rural areas (Environment Canada, 2008), and as a result
the yield was very poor in this year (e.g. the standard-
ized yield residual for CAR 4609 was −1.04). However,
the drought indices (expressed in terms of yield) were
extremely high in affected CARs, which would predict
a high-yield year. Therefore, the data from 1997 were
identified as outliers for most of the CARs in Manitoba
and were not used to develop the model. Replacing our
approach with a model of flood impacts on crop yield
would be an appropriate method to fill in the resulting
gaps.

2.3.5. Multi-index drought model development

A multi-index drought (MID) model was developed to
predict agricultural drought at six stages: pre-planting,
and at the beginning of each month during the growing
season (defined in the model as May 1st to Septem-
ber 1st). Before the growing season, the MID model
assesses drought risk at the beginning of April by evalu-
ating the drought indices of the recharge period (from the
previous September to current March for a given year).
During the growing season, the model is updated at the
beginning of each month by assessing the drought indices
from the recharge period to the preceding month. The
last stage of the model is updated at the beginning of
September, using the drought indices from August.

Principal Component Analysis (PCA) and multiple
linear regression were used to establish a predictable
relationship between drought indices and the standardized
spring wheat yield residuals. A nested loop procedure

Copyright  2011 Royal Meteorological Society Int. J. Climatol. 32: 1628–1639 (2012)
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Figure 2. Flowchart of the nested loop approach for MID model
construction, where n is the number of candidate drought indices at
each stage of modelling; m is the number of ranked resulting principal
components (ranked by their correlations between standardized yield
residuals) for the multiple regression analysis. In each iteration of
cross-validation (CV), a different year, i, was withheld for validation
until all 28 years were used for validation. For each modelling stage,
the optimum model structure was obtained by minimizing the CV

RMSE in the nested loop approach.

was employed to obtain the optimum model structure
(Figure 2). The outer loop selects a robust combination
of predictors. For each specific combination of drought
indices, the inner loop controls the selection of which
and how many principal components (PCs) should be
used for regression analysis. For a total of 28 years, a
leave-one-out cross-validation (CV) (by year) approach
was used to evaluate the model performance. For each
stage of modelling, the optimum model structure (i.e.
the robust combination of drought indices and the best
resulting PCs for the regression) was determined by the
minimized CV RMSE (i.e. root mean square error from
the cross validation).

This approach evaluates different combinations of
candidate drought indices at each stage of modelling,
which was necessary because as the crop develops, the
impact of previous months’ weather conditions on yield
becomes less important and may only introduce noise.
To save computing resources, the evaluations were not

performed on all possible combinations of candidates (i.e.
different combinations from drought indices with poor
correlations between yield residuals were ignored). The
first evaluated combination was a single drought index
with the highest correlation between yield residuals. The
subsequent combinations were created by adding the next
highest ranked drought index at each loop step, until all
candidates were included.

However, the specific combinations of drought indices
could not be used directly in a multiple regression,
because of the inherent multicollinearity among drought
indices. Multicollinearity refers to a situation in which
two or more explanatory variables in a multiple regres-
sion model are highly correlated, with a large portion
of shared variance and low levels of unique variance
(Coolidge, 2000). PCA was employed to extract the
smallest number of uncorrelated components (i.e. PCs)
that account for most of the variation in the original mul-
tivariate data (Rogerson, 2001). Although the first several
PCs account for most of the total variance, there is no
guarantee that they are the best predictors, and low vari-
ance components can have significant correlation with a
dependant variable (Jollife, 1982; Hadi and Ling, 1998).

To select the best PCs for multiple regression analy-
sis, another optimization loop (i.e. the inner loop of the
nested approach) was employed. Similar to the drought
index selection process, the PCs were ranked by com-
paring their correlations between the standardized yield
residuals. The evaluation began from the highest-ranking
PC, and then iteratively added the next highest-ranking
PC, until the CV RMSE started to increase. In this study,
the minimum CV RMSE was achieved with no more than
four highest-ranking PCs (one or two PCs for the majority
of cases). For each stage of modelling, a set of mini-
mum CV RMSEs from different combinations of drought
indices were compared, and the optimum model struc-
ture was defined as the specific combination of drought
indices and specific number of resulting ranked PCs that
obtained the lowest minimum CV RMSE in the set.

Three model evaluation statistics were employed to
evaluate the prediction accuracy, including the coefficient
of determination (R2), the RMSE, and the prediction
accuracy associated with each drought category. A leave-
one-out cross-validation was employed again to evaluate
the prediction accuracy of the model (c.f. Qian et al.,
2009). For each modelling stage, using the final-selected
predictors and the best PCs, the predicted results for each
year were obtained from the model calibrated with the
remaining 27 years of data.

3. Results and discussion

3.1. Results of cross-validation of the MID model

The R2 and standardized yield residual RMSE results
for the 54 MID models (9 clusters × 6 stages) are
plotted by cluster (Figure 3). The average rate of drought
category prediction accuracy for each stage of modelling
is summarized in confusion matrices (Table II).

Copyright  2011 Royal Meteorological Society Int. J. Climatol. 32: 1628–1639 (2012)
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Figure 3. Plots of the R2 (left) and RMSE (right) between the observed and the predicted standardized spring wheat yield residuals by cluster.
This figure is available in colour online at wileyonlinelibrary.com/journal/joc

Unsurprisingly, due to the uncertainties of (future)
growing season weather conditions, the model perfor-
mance at the pre-planting stage was relatively poor com-
pared to that of the later stages. Only 20% of mild and
11% of moderate droughts were precisely predicted, 42%
of severe droughts were detected as mild or moderate,
and 44% of extreme droughts were forecasted to be mild
to severe at this stage. This indicates that while growing
season’s weather is critical to evolving drought condi-
tions, the recharge period weather conditions also have an
important impact on drought occurrence and persistence.
This is understandable, because growing season precipi-
tation is usually not sufficient to meet crop demand for
most regions on the prairies. If spring soil moisture levels
are drier than normal, timely above-normal precipitation
is required during the growing season to make up the
deficit (Sutton, 2003). However, the chance of this occur-
ring in a growing season is low on the prairies. Therefore,
drought indices derived from recharge period are valu-
able for agricultural drought risk assessment, providing a
warning of possible drought progression as early as April.

When compared with Stage 1 and with regards to R2,
the model performance at Stages 2 and 3 increased for
the most regions, but remained stable for C1 and C5.
This indicates that the contributions of April and May
weather conditions on the yields varies spatially. For
some regions, the contributions are minor. The assess-
ment accuracy was further improved at the fourth stage
and reached its highest at the fifth stage (average R2 =
0.60). It is not surprising that the strongest correlation
between the drought indices and spring wheat yield resid-
uals was in June (Stage 4) and July (Stage 5), because
spring wheat yield is largely determined by moisture
stress during the heading and soft dough stages, which
usually occur during the second half of June through July
(Arora et al., 1987; Quiring and Papakyriakou, 2003).

Crops at these stages are vulnerable to drought, and even
a moderate drought may reduce the yield greatly. There-
fore, June and July are the most important months for
determining the risk of agricultural drought. Converting
the standardized yield residuals of Stage 5 to yield resid-
uals, the mean yield residual RMSE was 0.238 tha−1,
ranging from 0.162 to 0.387 tha−1.

Mavromatis (2007) evaluated the SPI and three varia-
tions of the PDSI (the original PDSI, a self-calibrated
version, and a modified scheme employing Priest-
ley–Taylor’s approach to compute potential evapotran-
spiration instead of Thornthwaite’s method) and their
respective Z-index for accessing rain-fed common wheat
and durum wheat yield in two pilot regions in north and
central Greece. The model performance statistics showed
that the drought indices based on Palmer’s scheme are
most suitable for predicting yields. The self-calibrated
PDSI ranked the highest (RMSE = 0.105 tha−1) for
predicting durum wheat residuals and the original PDSI
ranked the highest (RMSE = 0.149 tha−1) for predicting
common wheat residuals. Greece has a sharply seasonal
Mediterranean climate, and the summer is extremely hot
and rainless. Compared to the Canadian prairies, mois-
ture stress is a more significant factor in limiting yield
in Greece, and thus the prediction accuracy of Palmer’s
drought indices was higher. Quiring and Papakyriakou
(2003) performed an evaluation of four drought indices
(SPI, PDSI, Z-index and NDI (NOAA Drought Index) for
predicting spring wheat yield on the Canadian prairies
based on the sum of the index’s June and July values.
The model evaluation indicated that the Z-index was the
most appropriate index for predicting yield departures
when there is significant moisture stress, with a mean
RMSE value of 0.256 tha−1 for all 43 crop districts. The
multi-index approach was able to achieve lower mean
RMSE, however, of 0.238 tha−1.

Copyright  2011 Royal Meteorological Society Int. J. Climatol. 32: 1628–1639 (2012)
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Table II. The average prediction accuracy rate (%) for each drought category across all clusters.

Predicted (%)

Actual (%) Non-drought Mild Moderate Severe Extreme

Stage 1 Non-drought 75 20 4 1 0
Mild 73 20 7 0 0
Moderate 53 36 11 0 0
Severe 58 38 4 0 0
Extreme 56 33 9 2 0

Stage 2 Non-drought 74 21 4 1 0
Mild 73 19 8 0 0
Moderate 64 24 11 1 0
Severe 60 35 5 0 0
Extreme 58 33 5 4 0

Stage 3 Non-drought 77 16 6 1 0
Mild 67 22 11 0 0
Moderate 54 32 12 2 0
Severe 42 35 20 3 0
Extreme 42 42 9 7 0

Stage 4 Non-drought 79 16 5 0 0
Mild 57 30 11 2 0
Moderate 46 21 26 7 0
Severe 27 28 30 15 0
Extreme 35 19 30 16 0

Stage 5 Non-drought 82 15 3 0 0
Mild 54 35 9 2 0
Moderate 25 36 29 10 0
Severe 20 20 35 20 5
Extreme 14 31 23 23 9

Stage 6 Non-drought 81 15 3 1 0
Mild 58 32 7 3 0
Moderate 25 32 37 6 0
Severe 11 18 45 23 3
Extreme 4 23 40 26 7

August weather conditions seemed to have little con-
tribution to the prediction accuracy of Stage 6, and even
had a negative influence for some regions (e.g. C2). This
suggests that late summer weather plays only a minor
role in agricultural drought prediction, or may even mis-
lead the assessment. This is consistent with the findings
of Whitmore (2000), who pointed out that drought has lit-
tle further detrimental effect on the wheat from the hard
dough stage up to ripening. At this point, spring wheat
is near maturity and does not respond to water stress
as much as during the previous stages. A slightly drier
than normal August ensures that harvest can take place
without difficulty or significant loss of yield (Whitmore,
2000).

3.2. Spatial variability of model performance

The results also revealed great spatial variation across
the prairies in the model performance (Figure 4), gen-
erally paralleling the pattern of growing season precip-
itation. Figure 5 shows the mean and the coefficient
of variation (standard deviation/mean) of growing sea-
son precipitation for the period of 1976 to 2003. The

south, southwest, and central prairies that receive inade-
quate amounts of growing season precipitation and have
a large year-to-year variability in precipitation regime
tend to have stronger correlations between the drought
indices and the spring wheat yield. Conversely, the cor-
relation becomes weak in the eastern prairies with abun-
dant and reliable precipitation spread over the growing
season.

In addition, southern prairies tend to have more fertile
soils and higher temperature (Acton et al., 1998; Luo and
Zhou, 2006). These factors, which were not considered
in the model, do not normally limit crop growth in
the south, but may have increased influence on the
crop production of more northerly prairies. All these
factors collectively influence the correlation between
spring wheat yield and drought indices, and should be
jointly considered when interpreting their relationships
to model performance.

3.3. Comparison of multi-index and single drought
index

To further explore the advantages of employing multiple
drought indices versus a single drought index in this

Copyright  2011 Royal Meteorological Society Int. J. Climatol. 32: 1628–1639 (2012)



MULTIPLE DROUGHT INDICES FOR AGRICULTURAL DROUGHT RISK ASSESSMENT 1635

Figure 4. Mapping the R2 for the relationship between multiple drought indices and the standardized spring wheat yield residuals. This figure
is available in colour online at wileyonlinelibrary.com/journal/joc

Figure 5. Mapping the mean (left) and coefficient of variation (right) of growing season (May 1st to September 1st) precipitation for the prairies
(1976–2003). This figure is available in colour online at wileyonlinelibrary.com/journal/joc

study, the model was run using each individual drought
index separately. As can be seen from Figure 6, in
general the CV RMSEs of multi-index were lower than
(or occasionally equal to) any individual drought index
for all regions. Employing multiple drought indices is
especially beneficial for more arid areas, such as C3,
where there is a significant difference between the CV
RMSE from using multiple and single drought index.
For more humid areas that consistently receive large
amounts of precipitation during the growing season (i.e.
soil moisture is no longer an important yield-limiting

factor), such as C9, the performance of any single drought
index is relatively weak and thus the advantages of
combing multiple drought indices are less significant.

The comparison confirmed that the effectiveness of any
single drought index is temporally and spatially depen-
dent. For example, the PDSI was more suitable for use in
cluster 4 than in cluster 1. Even within specific regions,
such as C3, the PDSI was less valuable at early stages
than at latter stages. This is in accordance with the find-
ings of Mavromatis (2007), who pointed out that choos-
ing the best suited index is particularly difficult because

Copyright  2011 Royal Meteorological Society Int. J. Climatol. 32: 1628–1639 (2012)



1636 L. SUN et al.

Figure 6. Comparison of the model CV RMSE from each individual drought index (i.e. SPI 1, SPI 3, SPI 6, PDSI and Z-index, respectively)
and the multiple drought indices. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

the answer will vary depending on the crop’s sensitivity
to moisture storage and the characteristics of the study
area (e.g. soil properties/variability, climate regime, etc.).
Therefore, employing multi-index approach in drought
risk management is beneficial in overcoming some of the
deficiencies in any individual index.

3.4. Limitations of the MID model

The MID model is weak at accurately predicting large
negative yield departures, as severe and extreme droughts
were routinely underpredicted (Table II). For example,
none of the extreme droughts was precisely predicted
until Stage 5, with an accuracy rate of 9%, and 77%
of them were underestimated as mild to severe droughts.
One possible reason for this is the insufficient number
of observations with extremely low yield. For each
region, there are not more than 3 years with extreme
low yield within the 28 study years. It is also likely
that the response of yield to dry conditions may not
be linear when the soil moisture drops below a certain
threshold. A nonlinear model may be more appropriate
to estimate yields under very dry conditions (e.g. Quiring
and Papakyriakou, 2003). For regions with good density
and relatively evenly distributed weather stations, the
use of in-situ station data would further improve the
prediction accuracy of severe and extreme droughts.

The second weakness is that the model’s prediction
accuracy did not always show a stable increase from stage
to stage during the growing season. A certain level of
drought that had been correctly predicted at earlier stages
was likely to be mis-predicted as other categories at later

stages. This may be due to the model’s monthly scale
of assessment, which limits the opportunity to predict
droughts that occur for shorter intervals or to associate
the water stress to critical growth stages that are less
than a month. Besides total precipitation, the distribution
of the precipitation over the growing season is critical
to crop yield. In some cases, several large precipitation
events will skew the monthly precipitation totals, and
the empirical nature (specifically, the temporal resolution
of the relationships) of the model may miss cases of
inadequate precipitation in certain critical, water-sensitive
periods (e.g. at the end of June and the beginning of July).
Therefore, above average but poorly distributed growing
season precipitation can also lead to poor yield if the
timing prevents proper crop development or agricultural
practices. Conversely, even if the total growing season
precipitation complies with a numerical definition of
drought, it could possibly be so well-distributed in terms
of a crop’s pattern of water demands, that it provides an
adequate or even superior crop yield (Whitmore, 2000).
It is likely that the model performance would be further
improved if drought conditions were assessed weekly or
biweekly.

In addition, some poor predictions may be attributed to
factors other than drought, such as pests, disease, weeds,
and other weather-related damages (e.g. hail, wind, and
frost). Furthermore, the predictions could be affected
by the quality of the weather and observed yield data.
The observed yield data have errors that are particularly
difficult to quantify due to the constraints of privacy
protection.
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Figure 7. Mapping of the MID modelling results of 2001. The results were obtained at the beginning of each month from April to September.
This figure is available in colour online at wileyonlinelibrary.com/journal/joc

3.5. MID model application

To provide a better visualization of the assessment results,
the MID model was applied to 2001, which was identified
as the most severe drought on record in parts of the
prairies (Bonsal and Wheaton, 2005).

The spatial patterns and temporal behaviour of the
predictions are shown in Figure 7. Alberta and part of
Saskatchewan were identified as being under mild to
moderate drought stress at early stages. As the crop devel-
oped, the increasingly severe drought risk spread to most
of the regions in Saskatchewan. Compared to the actual
drought conditions of 2001, which were determined by
the observed standardized spring wheat yield residuals
(Figure 8), the overall assessment generally resembled
the dry conditions of 2001.

4. Conclusions

This article aims to present an operational model frame-
work that combines the strengths of various drought
indices to provide a more comprehensive assessment of
agricultural drought conditions in the Canadian prairies.
The MID model combines the strengths of various
drought indices derived from preceding and current
months as they become available to better match the
conditions (both spatially and temporally) in which they
work well, providing a more reliable and comprehensive

assessment of drought conditions. The results showed
that (1) the prediction accuracy of the MID model is
better than (or occasionally equal to) using any single
drought index for all modelling stages, (2) drought
indices derived from recharge period are useful for
early drought risk detection, (3) the prediction accuracy
improved as the growing season progressed, with the
most accurate assessments at the beginning of August,
and (4) a multi-index approach is best suited for the more
arid locations in the southern prairies, which tend to have
a more variable precipitation regime.

Further improvements in the approach presented here
are likely by generating drought indices on shorter time
scales (weekly or biweekly) to assess short-term dry
spells during critical crop phenological stages. A non-
linear model may be more appropriate to estimate crop
yield under very dry conditions. Additional data that mea-
sure some of the other factors affecting crop yield, such
as pests, diseases, and weather-related damages would be
valuable to further increase model performance. It would
also be useful to extend this study to cover other crops
that are important to the prairies, such as canola and
barley.

The drought and responding crop yield patterns vary
through time with climate and cropping pattern changes.
If the MID model is used on an operational basis, the
clusters need to be updated periodically as more years of
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Figure 8. Spatial distribution of agricultural drought intensity of 2001 as determined by the observed standardized spring wheat yield residuals.
This figure is available in colour online at wileyonlinelibrary.com/journal/joc

yield data become available. The model is not suitable for
drought-tolerant crops, because for them soil moisture is
not as important as a yield-limiting factor. It is also noted
that the MID model is not suitable for use in flood-prone
regions, because drought indices do not reflect flood-
induced yield reductions. However, a combination of
the MID with models of flood impacts would be an
appropriate subsequent improvement.

Besides climate-based drought indices that can be
derived from relatively easily available weather data,
complementary data from remote sensing, radar, and
other technologies such as biophysical models should
also be explored. Compared to climate-based drought
indices, satellite-derived data have high availability over
large areas, which is particularly important in data scarce
regions (Johnson et al., 1993). However, optical remote
sensing techniques are of limited value to assess recharge
period weather conditions, drought stress before seeding
and near harvest. Radar-based soil moisture estimates
offer promise for initial assessment of available water
prior to planting, but Boisvert et al. (1997) points out
that these estimates are at shallower depths than spring
wheat rooting depth. Near harvest, remote sensing veg-
etation indices approach a saturation level during the
last stage of crop development, making this method less
effective than desired (Qian et al., 2009). Process-based
models are often limited by data needs or problems with
parameterizing the models with confidence over large
spatial extents, such as those presented in this study.
Since all of these methods, including the MID model
presented in this article, show weaknesses in particular
situations, it will continue to be important to evaluate and
combine a variety of approaches to predict and monitor

agricultural drought over large areas such as the Canadian
prairies.
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